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Setting for causal analysis for a treatment

• A cohort of patients with

• A record of treatment received

• Various other measures and assessments

• An outcome of interest
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Estimands in causal analysis

• Average treatment effect (ATE)

• Reflects whole population

• Expected treatment effect if population had been randomized to treatment

• Average treatment effect in the treated (ATT)

• Reflects the population of patients selected for treatment

• Expected treatment effect if the population selected for treatment had been 
randomized to treatment
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Propensity score for treatment use

• Is a balancing score
• Weighted mean of each covariate is approximately equal across treatments

( ) ( )Pr 1|T T T TPS I= =z z
Indicator for treatment actually received

Vector of confounding covariates
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Setting for causal analysis for a treatment and a biomarker

• A cohort of patients with

• A record of treatment received

• An indication of whether a particular biomarker test was used and its result

• Biomarker use influences treatment use

• Various other measures and assessments

• An outcome of interest
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Propensity scores for biomarker test use

• Is a balancing score
• Weighted mean of each covariate is approximately equal for patients who used or did not use 

biomarker test

( ) ( )Pr 1|B B B BPS I= =z z
Indicator for biomarker test use

Vector of confounding covariates
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Conditional propensity score for treatment use given biomarker test 
use

• Is a balancing score
• Weighted mean of each covariate is approximately equal across treatments given biomarker 

tes use

( ) ( )| 1 , Pr 1| , 1T B T B T T BPS I I= = = =z z z
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Joint propensity score for treatment and biomarker test use

• Is a balancing score
• Weighted mean of each covariate is approximately equal across combinations of treatment 

and  biomarker test use
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Methods for using propensity scores in analysis

• Propensity score matching

• Pair each treated patient with an untreated 
patient having a similar propensity score

• May not be able to use all patients

• Stratification by propensity score

• Divide range of the propensity score into 
bins

• Use propensity score as a covariate

• Inverse probability of treatment weighting 
(IPTW)

• Approximately unbiased estimates for

• Linear models

• Biased estimates for

• Cox regression of survival data

• Logistic regression of categorical 

data

• Approximately unbiased estimates for

• Linear models

• Cox regression of survival data

• Logistic regression of categorical 

data

• Estimates ATT not ATE

Ref:  Austin (2014)
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Inverse joint propensity weighting
with focus on tested population

Weight for treated patients Weight for untreated patients Estimand

Τ1 ෢Pr 𝐼𝑇𝑖 = 1, 𝐼𝐵𝑖 = 1|𝐳𝑇𝑖 , 𝐳𝐵𝑖 Τ1 1 − ෢Pr 𝐼𝑇𝑖 = 1, 𝐼𝐵𝑖 = 1|𝐳𝑇𝑖 , 𝐳𝐵𝑖

ATE as a function of 

test result in the 

tested

Τ1 ෢Pr 𝐼𝑇𝑖 = 1, 𝐼𝐵𝑖 = 1|𝐳𝑇𝑖 , 𝐳𝐵𝑖 Τ1 ෢Pr 𝐼𝑇𝑖 = 0, 𝐼𝐵𝑖 = 1|𝐳𝑇𝑖 , 𝐳𝐵𝑖

ATE as a function of 

test result in the 

whole population

covariate vector for treatment for patient 

covariate vector for biomarker for patient 

Ti

Bi

i

i

=

=

z

z



Company Confidential11

Stabilized inverse joint propensity weighting
with focus on tested population

Weight for treated patients Weight for untreated patients Estimand

෢Pr 𝐼𝑇 = 1, 𝐼𝐵 = 1

෢Pr 𝐼𝑇 = 1, 𝐼𝐵 = 1|𝐳𝑇𝑖 , 𝐳𝐵𝑖

1 − ෢Pr 𝐼𝑇 = 1, 𝐼𝐵 = 1

1 − ෢Pr 𝐼𝑇 = 1, 𝐼𝐵 = 1|𝐳𝑇𝑖 , 𝐳𝐵𝑖

ATE as a function of 

test result in the 

tested

෢Pr 𝐼𝑇 = 1, 𝐼𝐵 = 1

෢Pr 𝐼𝑇 = 1, 𝐼𝐵 = 1|𝐳𝑇𝑖 , 𝐳𝐵𝑖

෢Pr 𝐼𝑇 = 0, 𝐼𝐵 = 1

෢Pr 𝐼𝑇 = 0, 𝐼𝐵 = 1|𝐳𝑇𝑖 , 𝐳𝐵𝑖

ATE as a function of 

test result in the 

whole population

covariate vector for treatment for patient 

covariate vector for biomarker for patient 
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Principles

• Develop and lock propensity score model without looking at outcome data

• Consider prior knowledge when selecting covariates for treatment or biomarker 
use

• Do not rely solely on significance testing

• Check to see if propensity score model balances covariates
• Absolute standardized difference between treatment groups (calculated using weights) < 10%

treatment control

2 2

treatment control
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+ Ref:  Austin (2009)
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Cohort from the Surveillance, Epidemiology and End Results (SEER)
data base (National Cancer Institute)

• Oncotype DX Breast Cancer Recurrence Score® results provided to SEER 
registries using SEER methods (Petkov 2016)

• Eligibility requirements:
• Breast cancer diagnosis Jan 2004 - Dec 2014

• Node-negative (N0), micromets (N1mic) or 1-3 positive nodes (N1-3), HR+, HER2-negative

• No prior malignancy or multiple tumors 

• Endpoint:  breast cancer mortality
• Follow-up through Dec 2015

• Chemotherapy (CT) use reported as yes vs. no/unknown

Ref:  Hortobagyi et al (2018)
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SEER study population

Ref:  Hortobagyi et al (2018)
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CT use in Breast Recurrence Score®-tested patients by 
nodal status and age (N=80,605)
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CT use in Breast Recurrence Score-tested patients by 
nodal status and tumor size (N=80,605)
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CT use in Breast Recurrence Score-tested patients by 
nodal status and tumor grade (N=80,605)
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CT use in Breast Recurrence Score-tested patients by 
nodal status and Recurrence Score group (N=80,605)
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Propensity model covariates
for CT use and for Recurrence Score use

• Tumor size

• Tumor grade

• Race and ethnicity

• Type of surgery

• Histologic subtype

• State of residence

• Socioeconomic status

• Patient age

• Year of diagnosis

• RS  (propensity for CT only)

Model separately by nodal status => relationship of covariates with

Recurrence Score test use and CT use may differ among nodal status groups 

Interactions of other variable with these
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Propensity model adjustment for imbalances in baseline covariates
N=70,087 patients with N0 disease

20

Propensity for yes CTPropensity for no CT

Ref:  Hortobagyi et al (2018)
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Analysis Methods

• Cox proportional hazards regression

• Inverse joint propensity score weighting

• Variance estimation using robust method of Lin and Wei (1989)

• Weighted Kaplan-Meier curves
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Truncating weights

• Goal:  avoid variance inflation due to a few patients with extreme weights

• Truncation of stabilized weights

• Set weights < 5th percentile to 5th percentile

• Set weights > 95th percentile to 95th percentile

Ref:  Lee, Lessler and Stuart (2011), Austin and Stuart (2015) 
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Significance tests for interaction with chemotherapy treatment
N=70,087 patients with N0 disease
Cox proportional hazards regression with inverse joint propensity weighting

Interaction HR (95% CI) p-value

Age (≤ 50 y vs > 50 years) with CT 0.581 (0.303,1.116) .103

Tumor Size (≤ 2 cm vs > 2 cm) with CT 1.579 (0.821,3.040) .171

Tumor Grade (II vs I, III vs I) with CT
0.299 (0.085,1.053)

.083
0.252 (0.074,0.858)

RS (RS 26-100 vs. RS 0-25) with CT 0.432 (0.229,0.812) .009

23

Each interaction added separately to model adjusting for Recurrence Score group (RS 26-100 vs. RS 0-25), 

tumor size (≤2 cm vs >2 cm), age (≤50  y vs >50 y), tumor grade (II vs I, III vs I), and chemotherapy use (yes 

vs. no/unknown).

Ref:  Hortobagyi et al (2018)
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1.0 = No CT Benefit

Increasing 

CT Benefit

Hazard ratio for chemotherapy benefit as a function of Recurrence Score result
Cox proportional hazards regression with inverse joint propensity weighting (N=70,087)

Ref:  Hortobagyi et al (2018)
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RS 0-25 RS 26-100

Age ≤50y 

Age >50y 

25

Breast cancer-specific survival in N0 disease, Kaplan-Meier estimates with inverse joint propensity 
weighting (N=70,087)

Ref:  Hortobagyi et al (2018)

Recurrence Score 0 – 25 Recurrence Score 26 – 100

Log rank P = .92 Log rank P = .03

Log rank P = .04 Log rank P = .03
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Results are consistent with randomized clinical trial results
Example:  National Surgical Adjuvant Breast and Bowel Project (NSABP) 
Trial B-20 

Ref:  Geyer et al. 2018

Recurrence Score < 11

Recurrence Score > 25

Recurrence Score 11 – 25

Test for interaction between 

Recurrence Score group and treatment:  p=.014

Log rank P < .001

Log rank P = .46

Log rank P = .42
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Discussion

• Causal analysis using propensity scores

• Reduces bias due to non-random use of treatment and biomarkers

• Increases variability of treatment main effect and interaction estimates

• All causal analyses assume no unmeasured confounders

• Results should be interpreted with caution
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Discussion

From Karim and Booth (2019):

“[Real-world data (RWD) comparative effectiveness] studies are best suited for 

settings in which there is existing evidence that a given treatment is efficacious

. . .  In settings where RCTs do not exist or may not be feasible, RWD can be 

informative;  however, these studies should be interpreted with caution.”



Company Confidential

Discussion

• Real-world evidence can help supplement evidence from 

randomized controlled trials
• Evaluate treatment effects or interactions in actual use populations

• Address effectiveness in patient populations under-represented in clinical trials

• Example:  young and old patients

• Analysis of real-word data related to biomarker-directed treatment should

account for joint propensity for biomarker and treatment use  
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