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Old View

* Broad eligibility

— Fear that an approved drug might not work in widespread
community practice

* Assumption that disease is homogeneous and that treatment
benefits all patients similarly



New Paradigm in Oncology Clinical Trials

* New century - recurrent somatic mutations in tumors were
discovered

— 50% of melanoma tumors contained the same point mutation in
the BRAF gene

 Tumors of the same primary site can represent different
diseases, with sensitivity to different treatments.

* This changed the approach to discovery and clinical
evaluation of new treatments.



Number of Oncology Drugs/Indications Approved by
FDA

¢ 2000 -2005 35 drugs

e 2011 -2016 85 drugs



The Most Important Decisions in Developing a
Phase Il Clinical Trial

* Whether to do a phase Il trial

 What patient population
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Nyntargeted
RandRat = J
Ntargeted

If TE=0
e RandRat = L

p+°

* if p,=0.5, RandRat=4



Comparing E vs C on Survival or DFS
5% 2-sided Significance and 90% Power

25% 509
30% 332
35% 227
40% 162
45% 118

50% 88



Enrichment Design

YES NO
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* Large randomized phase Il trials can take a long time



Adaptive Determination of

Intended Use Population




 Randomized population is only used as intended use
population to avoid issues of subset analysis

* The proportion of patients in the randomized population
who benefit from the test treatment in “positive” clinical
trials is very small



Adaptive determination of intended use
population

does not require adaptive changes

during trial
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Biomarker-Adaptive Threshold Design: A
Procedure for Evaluating Treatment With Possible
Biomarker-Defined Subset Effect

Wenyu Jiang. Boris Freidlin, Richard Simon

Many molecularly targeted anticancer agents entering the definitive stage of dinical development benefit
only a subset of treated patients. This may lead to missing effective agents by the traditional broad-
eligibility randomized trials due to the dilution of the overall treatment effect. We propose a statistically
rigorous biomarker-adaptive threshold phase |l design for settings in which a putative biomarker 1o iden-
tify patients who are sensitive to the new agent is measured on a continuous or graded scale.

The design combines a test for overall treatment effect in all randomly assigned pauenls with the estab-
lishment and validation of a cut point for a prespecified biomarker of the itive population. The
performance of the biomarker-adaptive design, relative to a traditional design that ignores the biomarker,
was evaluated in a simulation study. The biomarker-adaptive design was also used to analyze data from
a prostate cancer trial.

In the simulation study, the biomarker-adaptive design preserved the power to detect the overall effect
when the new treatment is broadly effective. When the proportion of sensitive patients as identified by
the biomarker is low, the proposed design provided a substantial improvement in efficiency compared
with the traditional trial design. Recommendations for sample size planning and implementation of the

biomarker-adaptive design are provided.
P brei A 1as8

Iy valid test for a biomarker-defined subset effect can be prospectively incorporated into a ran-

domized phase Il design without compromising the ability 1o detect an overall effect if the intervention is

beneficial in a broad population.
J Natl Cancer Inst 2007:99:1036-43

Human cancers are heterogencous with regard to their molecular
and genomic properties. Recent advances in biotechnology have
resulted in 2 shift toward moleculady targeted anticancer agents.
These new therapeutics are likely to benefit only a subset of the
patents with a2 given cancer. Definstive testing of such targeted
agrents requires the idenufication of the appropriate “sensitive™
populason. When biomarkers to identify the patients who are
likely to benefit from the new therapy are available, targeted clini-
cal trials that restrct eligibality to sensitive patients should be used
(1). However, reliable assays to identify sensitive patients are often
unavailable. In the ak e of a reliable b rker, broad-eligibilicy
clinical trials are used routnely. Most of these trials use a conven-
tional design, in which the pramary analysas s based on comparison
of all randomly assigned patients. This often leads to the failure to
recognize effective agents due to dilution of the treatment effect by
the presence of the pasents who do not benefic from the agene.
Retrospective analysis of trnals with a conventional design can be
used as an mimal step in sdentifying biomarkers for the sensitive
subpopulason. However, retrospecuvely identfied biomarkers
typically have to be validated in a confirmatory prospective ran-
domized phase I clinical erial (2). This approach s inefficient and
may considerably prolong clinical development.

1036 Articles | JNCI

Previously, we have proposed a desgn [adapuve signature
design (3)] that combanes a definitve test for treatment effect ina
broad population with sdentificaton and validaton of 2 genomic
signature for the subset of sensitve patients if the broad populatson
test s negative. The adapave signature design was developed for
high-dimensional data such as gene expression microarrays, where
only a few unknown genes among thousands assaved may be rele-
vant and where a classifier (signature) to sdentify sensitve patients
is not available. The design incorporates both the identificason
and the validation of 2 pharmacogenomic sgnature for sensitive
patents.

Often, preliminary information on a bsomarker to sdentify the
sensative subset of patients is available but an appropriate cutoff
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Adaptive Threshold Design

Randomized clinical trial of E vs C

Single candidate biomarker B with K candidate cut-points b,, ..., b,
in [0,1]
e.g. b;=0, b,=0.25 & b3=0.5

Entry not restricted by biomarker value



Final Analysis

Test H, for k=0,1,...,K.
— H, : treatment effect is O for population with B=b,

— Compute p, for treatment effect for each population with B=b,
Use p* = min {p,} as global test statistic.
Test significance of p* using a permutation test.

If global null hypothesis was rejected, model treatment effect
as a function of biomarker value

— Compute bootstrap confidence intervals for the optimal cut-point



Threshold Model for Survival Data

(h(t,x,z)\ B
logk e () J = [Ox+ yzl(x = b)

z=0,1 treatment indicator

x=biomarker value

I =1ndicator function



Cancer Therapy: Clinical

Adaptive Signature Design: An Adaptive Clinical Trial Design for
Generating and Prospectively Testing A Gene Expression

Signature for Sensitive Patients
Bans Fresdhn and Richard Simon
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Dcvzlopmmls in tumor biology have resulted in shift toward
moleculasly targeted drugs (1 - 3] Most human tumor types are
heterogeneous with regard to molecular pathogenesis, genomic
signatures, and phenotypic properties. As a result, only a subset
of the patients with a given cancer is likely o benefit from a
targeted agent {4). This complicates all stages of clinical
development, especially randomized phase I wials (5, 6). In
some cases, predictive assays that can accurately Identify
patients who are likely o benefli from the new therapy have
been developed. Then, targeted randomized designs that resiricc
eligibility 1o patients with senshtive tumors should be used (7).
However, reliable assays 1o select sensitive patients are often not
available (8, 2). Consequently, raditional randomized clinical
trails with broad eligibility criteria are routinely used 10
evaluate such agents. This is generally inefficient and may lead
10 missing effective agents.
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Genomic technologies, such as microarrays and single
nucleotide polymorphism genotyping. are powerful tols that
hold a great potential for identifying patients who are likely
to benefit from a targeted agent (10, 11). However, due to the
large number of genes available for analysis, interpretation of
these data is complicated. Separation of reliable evidence from
the random patterns inherent in high-dimensional daia
requires specialized statistical methodology that is prospectively
incorporated In the wial design. Practical implementation of
such designs has been lagging In panicular, analysis of
microarray daia from phase I randomized stedies is usually
considered secondary 10 the primary overall comparison of all
eligible patients. Many analyses are not explicidy written into
prowcols and done nerospectively, mainly as “hyposhesis-
generating” tools.

We propose a new adaptive design for randomized clinical
rials of molecularly targesed agents in settings where an assay
or signature that identifies sensitive patients is not available.
Our approach includes three components: (@) a statistically
valid identification, based on the first stage of the trial, of the
subset of patients who are mast likely to benefit from the
new agent; {#) a properly powered test of overall treatment
cffect at the end of the trial using all randomized patients:
and {¢) a test of geatment effect for the subset identified in
the first stage. but using only patients randomized in the
remainder of the wial. The components are prospectively
incorporated into a single phase I randomized clinical tnal
with the overall false-positive error rate controlled at a
prespecified level

www aacrjournals.org



| ——|
Randomize n
patients to T or C

Adaptive Siganture Design
Discover & Validate Predictive Signature
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What is a Predictive Classifier?



Predictive Classifier

* A predictive classifier is not a prognostic classifier

* |tis a binary classifier of whether the prognosis of a patient on
E is better than the prognosis of the patient on C



e X vector = {E,C}



Predictive Classifier

* The predictive classifier may be based on separate prognostic
classifiers for patients on E and for patients on C

— P(x|C) probability of response to rx C for patient with covariate
vector X

— P(x| E) probability of response to rx E for patient with covariate
vector X

— Predictive Classifier(x) = E if P(x|E) > P(x|C) + €
- = C otherwise



* Fit (penalized) PH model
h(t;z,x)
hy ()

log =az+zfB'x+(1—-z)y'x

z ~(0,1) treatment indicator

X ~ covarilate vector



h(t;z=1,x) h(t;z=0,x)
hy(2) hy(2)

=a+(p-y)'x

Classify Eif a+ (5 —y)'x <&, otherwise classify C



Example

e At interim analysis determine the mle’s of the regression
coefficients and their estimated covariance matrix

* Compute approximate mean and variance of

A(x)=a+ (/é1 — 7% + (/éz —7,)%,
~ N(u(x),0(x))



Pr[A(x) <A*|~ D iA Z__(’g@ )>

Exclude future cases with covariate vectors for which this quantity 1s <¢



Evaluation of Predictive Classifier on Separate
Test Set

Classify each patient in the test set using their covariate vectors using the classifier developed

on the training set

Compute Kaplan-Meier curves of treatments for patients classified

as likelihood to benefit from T over C

Compute log-rank test comparing the two Kaplan-Meier curves
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Cancer Therapy: Clinical

The Cross-Validated Adaptive Signature Design
Boris Freidin', Wenyu Jiang”, and Richard Simon’

Abstract

Purposc: Many anticancers theorapios benefit only a aubact of treated patients and may be overlooked by
the traditional broad eligibility approach (o desigen prhase 11T clinical trials. New biotechnologies such as
microarrays can be used to identify the patients that are maost Hkely to benefic from anticancer theraples
However, due to the high dimeomnaional nature of the genomic data, developing a reliable classificr by the
tirne the delinitive phase 1 trail os designed may not bhe fcasible.

Experimental Design Previously, Freldlin and Simon (Clindcald Cancer Research, 200%) introstuced the
adagrtive signature design that combines a prosgprective development of a sensitive patient clamsificer and a
properly powerexd test for overall effect in a single gprivotal trial. In this article. we propose a cross valida
tion extension of the adapetive signature design that ogtimizes the efficiency of bath the classifier devel
opment and the validation components of the design.

Renulta: The new design in evaluated through simulations and is applicd to data from a randomised
breast cancer trial

Conclusion: The cross validation approach s shown to conmiderably improve the performance of the
adagmtive signature design. We also describe approaches to the entimation of the treatment cffect for the

identified sensitive subpopulation, Cln Cancer Res, 16(2) G918 92010 AACR.

Due o the molecular heterogencity of most hurmman
cancers, only a subset of treated patients beneflit from a
wiven theragsmy. This is particularly relevant for the new gen
eration of anticancer agents that tanget sprecilic molecular
pathsways {1-3), Cenaomic {or proteinomic) technologies
sach as muacroarmays providde prosverfal tools for tdentifying
A genetic signature (dlagnoscie tess) for patients who are
muost Hkely to benefic from a targeted agent, Ideally, such
diagnostie test should be developed and validated before
commendcing the definitive phase 111 trial {(4), However,
due to the complexity of signaling pathways and the large
number of genes available for analysis, the developmenst
of a reliable diagnostic classifior using varly nonrando
mized phase 11 data is often not feasible. Conducting a
phase 11l randomixzed clinical trial {RCT) requires coneid
erable time and rescources. Therefore, clinical trial donigna
that allow combining the definitive evaluation of a new
agent with the development of the companion diagnoatic
teat can conaiderably apecd up the introduction of new
cancer therapiona.

Previously, the adaptive signature deaign (ASD) haas
been proposed for sottings where a signature to kdontify
senaitive patients is not available (%), The design combines
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the prospective development of a pharmacogenomic Jdiagg
nosic test {(signature) (o select sensitive patients with a
properly powered test for overall effect. It was shown that
when the progeortion of patients sensitive o the new drug
s low, the ASE? substantially reduces the chance of false
rojection of effective new treatments. When the new treat
ment is broadly effective. the powers of the adaptive design
o detect the overall effect is saimilar (o that of the tradi
tional design.

The signature component of the ASID carries out signa
ture development and validation on the mutually excla
sive subgroups of patients {e g.. hall of the study
pogralation is used (o develop a signature and another half
o validate i), Although the conceptual simplicity of this
agrprroach s apprealing. it also limmiits its grower as only halfl
of the patients are used for signature development and
half for validation. This is esgprecially relevant in the present
setting becanse (a) signature development in high dimen
sional data requires large sample sives, and {(b) when the
fraction of sensitive patients s law, a large namibeer of pa
tients necds to be scereenced Lo identify the sulflicient mum
ber of sensitive gratients Lo achieve accegtabsle grower.

In this article. we describe an extension of the ASIDY in
which signature develogment and validation are embed
dest in o complete cross validation procedure. This allosvs
the wse of virtually the entire study popadation in both sig
nature development and validadion steps,. We develop a
procesture thas preserves the study wise typwe | error while
substantially increasi the satistical power for establish
inge o statistically significant treatment effect for an ident
fled subsmer of patients who benefit from the exgrerimental
treatment. We also examine agproaches o estamation of
treatment effect for the tdentiflied sensitive subset
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Cross-Validated Adaptive Sighature Design

* Define predictive classifier development algorithm A

* Apply algorithm to full dataset D to develop predictive
classifier M(x;D,A) for use with future cases

 How to evaluate the performance of this classifier?

— How to avoid the bias of “re-substitution” since there is no separate
test set?



Pre-validation solution

e Construct a “pre-validated” test set

* The pre-validated test set will contain all of the cases with their
covariate vectors, treatment indicators and outcomes

* The synthesized predictive score for case i is
s/=M(x.; D" ,A).



Convert the pre-validated scores s' to a binary classification,

Compute Kaplan-Meier curves of treatments for patients classified

as likelihood to benefit from E over C

Compute log-rank statistic comparing the two Kaplan-Meier curves



Compute log-rank statistic comparing the two Kaplan-Meier curves

Use permutations of treatment indices to evaluate significance of the pre-validated Kaplan-Meier

curves. The entire cross-validation must be repeated from scratch.



Key Ideas

Replace multiple significance testing by development of one predictive classifier

Internal validation by computing significance of treatment effect in adaptively
determined intended use population

Obtain almost unbiased estimate of the treatment effect of future classifier positive
patients



Pre-trial planning for Adaptive Signature or Adaptive
Threshold Design

* Analysis plan should be in protocol

* Analysis plan should specify candidate covariates and
threshold cut-offs



Measures of predictive performance for survival
data

* Spread of KM curves of the two treatment groups for the

subset of patients classified as likely to benefit from T
over C.

— Log-rank statistic
— Hazard ratio

* Area under time-dependent ROC curve for adaptively
determined subset

* Simon’s sensitivity, specificity, npv, ppv for binary
predictive covariates and survival data



Figure 1: Overall analysis. The value of the log-rank statistic is 2.9 and the corresponding p-value is 0.09. The new
treatment thus shows no benefit overall at the 0.05 level.
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Figure 2: Cross-validated survival curves for patients predicted to benefit from the new treatment. log-rank statistic

= 10.0, permutation p-value is .002
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Developing and Validating Continuous Genomic Signatures in
Randomized Clinical Trials for Predictive Medicine

Shigeyuki Matsui', Richard Simon®, Pingping Qu°, John D. Shaughnessy Jr’,

Bart Barlogie", John Cl'owlc.zy3

'Department of Data Science, The Institute of Statistical Mathematics, Tachikawa,
Tokyo, Japan; ‘Biometric Research Branch, Division of Cancer Treatment and
Diagnosis, National Cancer Institute, Rockville, Maryland, USA; ‘Cancer Research And
Biostatistics, Seattle, Washington, USA; “The Myeloma Institute for Research and

Therapy, University of Arkansas for Medical Science, Little Rock, Arkansas, USA



Survival Probability
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Fig. 1. Survival curves for all 351 patients with genomic data in the

randomized trial for multiple myeloma.



Survvel Probutd by

b 04 06 08

oo
.

(0] Intermediaie score {c) High scare

0

=
HR =055
=3
D
§ - §
z= E
B z
& ;
—— Thalcomide (18/57) o — Thalcomice (32)67) o3 — Thaldomde (25/51)
-== Contra (27/47) === Contral (31/539) === Contral {24/60)
o o
< o < ' Y
2 < L] e 0 o 2 < L3 3 *» < 2 < € 2
Tire Srce Errolires! (ysars) Tane Snoe Ervolvrect (poars) Tivee S ce Evalvany (pears)
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and “High™ derived from using thresholds of 33rd and 66th percentiles in the

predicted signature score S (panels a-c).
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Adaptive enrichment designs for clinical trials

NOAH SIMON*

Department of Statistics, Stanford University, Stanford, CA 94305, USA
nsimon(@stanford.edu

RICHARD SIMON
Biometric Research Branch, National Cancer Institute, Bethesda, MD 20892, USA

SUMMARY

Modern medicine has graduated from broad spectrum treatments to targeted therapeutics. New drugs
recognize the recently discovered heterogeneity of many diseases previously considered to be fairly homo-
geneous. These treatments attack specific genetic pathways which are only dysregulated in some smaller
subset of patients with the disease. Often this subset is only rudimentarily understood until well into large-
scale clinical trials. As such, standard practice has been to enroll a broad range of patients and run post
hoc subset analysis to determine those who may particularly benefit. This unnecessarily exposes many
patients to hazardous side effects, and may vastly decrease the efficiency of the trial (especially if only a
small subset of patients benefit). In this manuscript, we propose a class of adaptive enrichment designs that
allow the eligibility criteria of a trial to be adaptively updated during the trial, restricting entry to patients
likely to benefit from the new treatment. We show that our designs both preserve the type 1 error, and in
a variety of cases provide a substantial increase in power.

Keywords: Adaptive clinical trials; Biomarker; Cutpoint; Enrichment.



Adaptive Enrichment Designs

* Includes one or more interim analyses that may modify
eligibility criteria based on candidate covariates

* Single significance test at final analysis

* All patients included in final analysis



Adaptive Enrichment Designs

Single binary covariate
Quantitative covariate
Multiple candidate covariates
Patient strata



* A, =statistic for comparing outcome of treatment and control
group of all patients who entered study during period k
(k=1,2,...K).

— Under null we assume that A, has known distribution with mean
0 and independent of t; for all jzk.

* At end of trial, one significance test performed using test
statisticw,; A, +...+w, Ay



* There is no final subset analysis

* Power is gained by increasing alternative means of later A, by
restricting eligibility

* At each interim analysis time j, a decision is made concerning
whether/how to change eligibility criteria for subsequent
periods. That decision may use data accrued for patients who
entered the trial up until the current interim analysis.



* The decision made at interim time j can be based on use of a
“surrogate” endpoint instead of the endpoint to be used at the
final analysis.

* The validity of the significance test performed at the end of the
trial does not depend on the decision made at interim times
concerning eligibility.

— A Bayesian model for managing eligibility decisions can be used
although the final significance test is frequentist (Frasian)
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Using Bayesian modeling in frequentist adaptive
enrichment designs

NOAH SIMON*

Department of Biostatistics, University of Washington, Box 357232, Seattle, WA 98195, USA
nrsimon(@uw.edu

RICHARD SIMON

Biometric Research Branch of the National Cancer Institute (at the National Institutes of Health),
9609 Medical Center Dr, Rockville, MD 20850, USA

SUMMARY

Our increased understanding of the mechanistic heterogeneity of diseases has pushed the development
of targeted therapeutics. We do not expect all patients with a given disease to benefit from a targeted
drug; only those in the target population. That is, those with sufficient dysregulation in the biomolecular
pathway targeted by treatment. However, due to complexity of the pathway, and/or technical issues with our
characterizing assay, it is often hard to characterize the target population until well into large-scale clinical
trials. This has stimulated the development of adaptive enrichment trials; clinical trials in which the target
population is adaptively learned; and enrollment criteria are adaptively updated to reflect this growing
understanding. This paper proposes a framework for group-sequential adaptive enrichment trials. Building
on the work of Simon & Simon (2013). Adaptive enrichment designs for clinical trials. Biostatistics 14(4),
613-625), it includes a frequentist hypothesis test at the end of the trial. However, it uses Bayesian
methods to optimize the decisions required during the trial (regarding how to restrict enrollment) and
Bayesian methods to estimate effect size, and characterize the target population at the end of the trial.
This joint frequentist/Bayesian design combines the power of Bayesian methods for decision making
with the use of a formal hypothesis test at the end of the trial to preserve the studywise probability of a
type I error.

Keywords: Adaptive enrichment; Bayesian statistics; Clinical trials.
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1 | INTRODUCTION
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Richard Simon' | Noah Simon2(

Identification of treatment selection biomarkers has become very important in cancer
drug development. Adaptive enrichment designs have been developed for situations
where a unique treatment selection biomarker is not apparent based on the mecha-
nism of action of the drug. With such designs, the eligibility rules may be adaptively
modified at interim analysis times to exclude patients who are unlikely to bene-
fit from the test treatment.We consider a recently proposed. particularly flexible
approach that permits development of model-based multifeature predictive classi-
fiers as well as optimized cut-points for continuous biomarkers. A single significance
test, including all randomized patients, is performed at the end of the trial of the
strong null hypothesis that the expected outcome on the test treatment is no better
than control for any of the subset populations of patients accrued in the K stages of
the clinical trial.

In this paper, we address 2 issues involving inference following an adaptive enrich-
ment design as described above. The first is specification of the intended use
population and estimation of treatment effect for that population following rejec-
tion of the strong null hypothesis. The second issue is defining conditions in which
rejection of the strong null hypothesis implies rejection of the null hypothesis for the
intended use population.

KEYWORDS

adaptive clinical trials, biomarker, enrichment. resampling






Adaptive Threshold Enrichment

 Randomize patients without regard to value of biomarker but
measure biomarker pre-randomization on all patients

* Pre-specify K candidate thresholds for the biomarker B,,...,By



Adaptive Threshold Enrichment

* Perform interim analysis using intermediate endpoint
* Find largest candidate cut-point B, such that
Pr[A(B) 2A,] < € for B< B,

where A, is the treatment effect to be detected under the
alternative hypothesis.

* Continue accrual only for patients with B > B,



Simulation with Binary Response

Po= response probability for control group
Po=response probability for treatment group if B<b*
b*= true cut-point

p,= response probability for treatment group if B2b*
K=number of candidate cut-points

B is uniform on (0,1)

One interim analysis



Po=-2, P;=.5, K=5, N,=200, all pts 100/yr

True cut-point Power adaptive Power non-adaptive Accrual adaptive
adaptive

2.55 2.25
.5 .897 7126 3.19 3.25
.67 .768 424 3.97 4.75

Two period cut-point enrichment
Response to T =p, it B=cut-point
B uniform on (0,1)



* Simulations show that adaptive enrichment can substantially
increase the statistical power with adaptive threshold
determination and multi-biomarker modeling



6. REDESIGN OF CETUXIMAB TRIAL

In addition to the previous simulations, we illustrate the approach to adaptive enrichment design described
here using the clinical trial described by Bokemeyer and others (2009). The trial compared the standard of
care chemotherapy regimen FOLFOX-4 to the same regimen with the addition of the anti-EGFR antibody
cetuximab as first-line treatment for newly diagnosed patients with metastatic colorectal cancer. A total
of 337 patients were randomized equally to the two treatments in a clinical trial involving 79 centers. The
sample size was established to have 90% power at a 0.05 significance level for detecting an odds ratio
of 2.33 for response rate comparing the two treatment groups overall. At the start of the trial there was
uncertainty about the influence of EGFR expression or KRAS mutation on the probability of response to
cetuximab.

The primary analysis of Bokemeyer and others (2009) gave a response rate for the cetuximab containing
arm of 46% compared to 36% for the chemotherapy only control. The p-value reported was 0.064,
interpreted as not significant at the 0.05 level.

We developed an adaptive enrichment design for this clinical trial that included EGFR expression level
and KRAS mutation status as candidate predictive biomarkers. Response is modeled separately for the
cetuximab and control groups using logistic regression. For details on how the parameters of the models
were estimated from the published data see the supplemental material available at Biostatistics online.



Table 3. Operating characteristics for the three redesign scenarios of Bokemever and others (2009),
averaged over 1000 simulated trials, for two blocks with n = 168 patients per block. Each column is a
different trial design: AC, FC (0.3), FC (0.5), FC (0.7) are all enrichment trials. These designs do not
restrict entry in the first block. ‘A-C’ uses an adaptive cutpoint in the second block with candidate values
(0.3,0.5,0.7), ‘F-C(n) uses a fixed cutpoint with value n. ‘Non-A’is a standard unenriched design.
‘Sensitivity’and ‘Specificity ’are given for detecting the population which benefits. ‘Effect size’is the true
effect size for the designated population. ‘Bias’ is the amount by which each procedure over-estimates
that effect size. ‘root-MSE"’ is the root-mean-square errvor of the effect size estimate for the designated
population. All operating characteristics, other than power and accrual time, are averaged only over
successful trials

AC Non-A FC (0.3) FC (0.5) FC (0.7)

1 Power 0.68 0.23 0.62 0.69 0.73
Sensitivity 0.99 1 0.99 0.99 0.99

Specificity 0.92 0 0.92 0.93 0.89

Accrual time 454 336 423 452 478

Effect size 0.21 0.06 0.21 0.21 0.2

Bias 0.04 0.07 0.05 0.04 0.04

Root-MSE 0.06 0.08 0.07 0.06 0.06

2 Power 0.81 0.68 0.79 0.84 0.86
Sensitivity 0.98 1 0.98 0.98 0.98

Specificity 0.56 0 0.51 0.58 0.58

Accrual time 412 336 376 406 442

Effect size 0.18 0.13 0.18 0.18 0.18

Bias 0.04 0.03 0.05 0.04 0.03

Root-MSE 0.06 0.05 0.06 0.06 0.06

3 Power 0.38 0.03 0.22 0.37 0.45
Sensitivity 1 1 1 1 1

Specificity 0.76 0 0.83 0.8 0.74

Accrual time 488 336 452 488 488

Effect size 0.15 0.01 0.17 0.16 0.14

Bias 0.08 0.12 0.09 0.07 0.08

Root-MSE 0.09 0.12 0.1 0.09 0.09
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Table 4. Operating characteristics for the three redesign scenarios of Bokemever and others (2009),
averaged over 1000 simulated trials, for three blocks with n = 112 patients per block. Each column is a
different trial design: AC, FC (0.3,0.3),..., FC (0.5,0.7) are all enrichment trials. These designs do not
restrict entry in the first block. ‘A-C’ uses adaptive cutpoints in the second and third blocks with candidate
values (0.3,0.5,0.7). ‘F-C(n,,n>) uses fixed cutpoints with value n, in block 2 and n» in block 3. ‘Non-A"
is a standard unenriched design. ‘Sensitivity’ and ‘Specificity’ are given for detecting the population
which benefits. ‘Effect size’ is the true effect size for the designated population. ‘Bias’is the amount by
which each procedure over-estimates that effect size. ‘root-MSE"’ is the root-mean-square error of the
effect size estimate for the designated population. All operating characteristics, other than power and
accrual time, are averaged only over successful trials

AC Non-A FC(0.3,0.3) FC(0.5.0.5) FC(0.7,0.7) FC(0.5,0.7)

1 Power 0.78 0.21 0.74 0.82 0.82 0.83
Sensitivity 0.98 1 0.99 0.98 0.97 0.98
Specificity 0.92 0 0.93 0.95 0.89 0.92
Accrual time 511 336 461 503 552 525

Effect size 0.21 0.06 0.21 0.22 0.2 0.21

Bias 0.03 0.07 0.03 0.02 0.02 0.02
Root-MSE 0.06 0.08 0.06 0.06 0.06 0.06

2 Power 0.86 0.65 0.8 0.86 0.87 0.88
Sensitivity 0.97 1 0.98 0.98 0.96 0.97
Specificity 0.62 0 0.58 0.67 0.64 0.67
Accrual time 459 336 400 451 512 480

Effect size 0.19 0.13 0.18 0.19 0.19 0.19

Bias 0.03 0.03 0.04 0.03 0.02 0.03
Root-MSE 0.06 0.05 0.06 0.06 0.06 0.05

3 Power 0.49 0.03 0.35 0.5 0.58 0.57
Sensitivity 1 1 1 1 0.99 1
Specificity 0.8 0 0.84 0.83 0.74 0.79
Accrual time 544 336 502 556 564 569

Effect size 0.16 0.01 0.17 0.17 0.14 0.15

Bias 0.06 0.13 0.07 0.06 0.07 0.06

Root-MSE 0.08 0.13 0.08 0.07 0.08 0.08




Determining which patients benefit from a new treatment once the study-wise null is rejected i1s a
problem for all clinical trials, including standard broad eligibility trials. Serious adverse drug reactions
(ADRs) from FDA approved drugs administered according to the labeling indication is a major medical
problem. One study claimed that such ADRs represented the fourth to sixth leading cause of death in the
United States (Lazarou and others, 1998). Using the eligible population in pivotal studies as the intended
use population simplifies statistical significance testing but can result in many patients being exposed
to the risk of ADR without likelihood of benefit. This is evident in the small effect sizes seen in many
“positive” pivotal trials with broad eligibility. An approach to labeling based on a quantitative risk-benefit
assessment that takes account of covariates effecting risk and benefit, rather than statistical significance
for a population, might provide physicians more effective guidance. Although specifying an intended use
population may be necessary for determining how the drug may be advertised, a more individualized based
approach such as described in this paper for benefit may provide a framework for a more satisfactory way
of communicating the uncertainties in benefits and risks.
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