USING NATURAL HISTORY DATA AS A COMPARATOR IN AN ULTRA-ORPHAN DISEASE INDICATION

Peter Slasor, ScD BioMarin Pharmaceutical

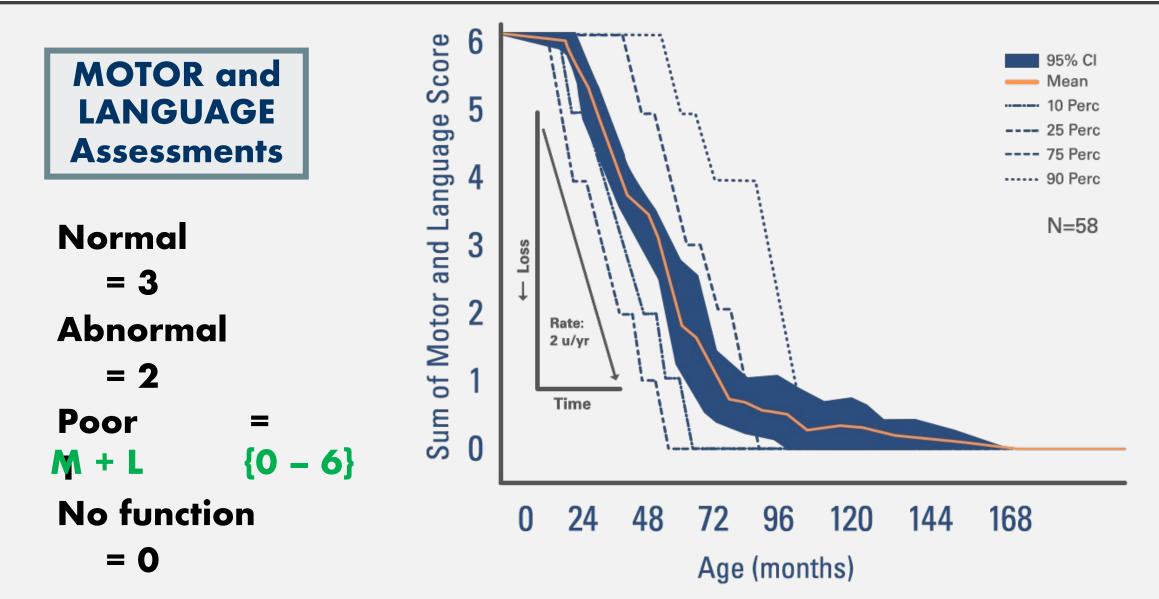
November 7, 2019

OUTLINE

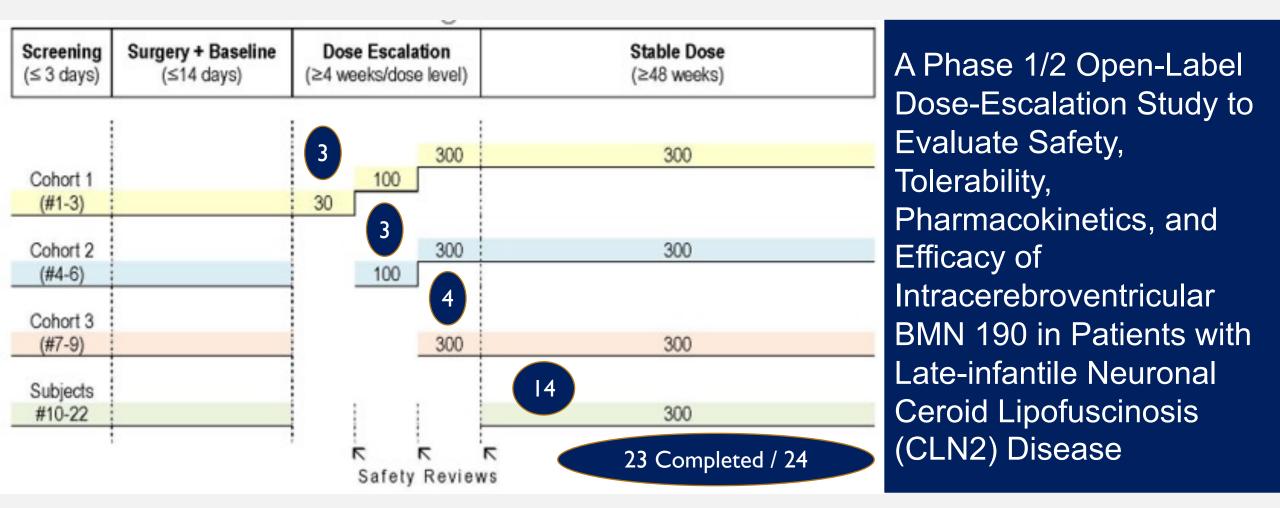
1. Ultra-rare Disease Setting: CLN2 Disease and the Clinical Development plan

2. Obtaining Breakthrough Therapy Designation (BTD)

3. BLA submission and discussions concerning retrospective NH data


4. Summary and Conclusions

ULTRA-RARE DISEASE SETTING: CLN2 DISEASE AND THE CLINICAL DEVELOPMENT PLAN


CLN2 DISEASE: CLINICAL PROGRAM PLANNING

Challenges	Advantages
 Ultra-rare Only small N trials viable Difficult to commit with limited evidence/POC 	 Potential high efficacy (Δ) Enzyme replacement therapy Severe disease, rapid progression
Few Publications	Active scientific community (DEMCHILD) Existing NH database (N ~ 70)
No validated endpoints	Developing measures of motor & language • Within NH database

NATURAL HISTORY OF CLN2 DISEASE: CHILDREN DECLINE ~2 POINTS PER YEAR IN MOTOR-LANGUAGE SCORE

CLINICAL DEVELOPMENT PLAN

CLINICAL DEVELOPMENT PLAN

Treated Population: Early and active:

- Screening age \geq 3 years
- Screening ML score in the range 3 6

NH Population (Evaluable: N = 42)

- age ≥3 years
- \geq 2 ML scores, range 1 5, at least 6 months apart

Primary Endpoint: Mean slope of ML score

- CSR: 1-sample T-test Compare against fixed value "2"
- ISE: 2-sample T-test Treated versus NH (no matching)

Look for early efficacy \rightarrow negotiate with FDA

- Breakthrough Therapy Designation
- BLA filing on interim data

High Motivation	 dog models very promising NH data available
	 High ∆ (3 year ML depletion) ERT in severe disease

OBTAINING BREAKTHROUGH THERAPY DESIGNATION (BTD)

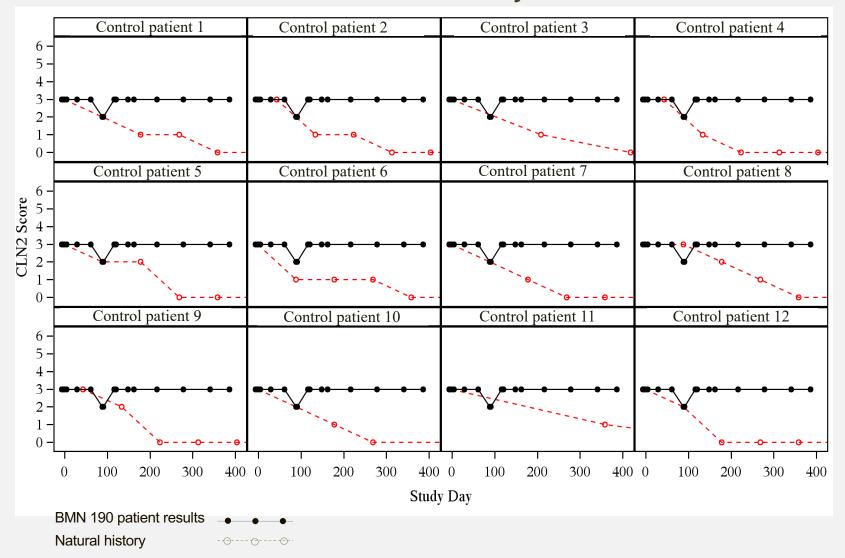
BREAKTHROUGH THERAPY DESIGNATION (BTD)

<u>Objective</u> – develop evidence needed to support approval – efficient as possible

<u>**Requirements</u>** – early clinical evidence drug provides substantial improvement on **clinically significant** endpoint</u>

- 1. Effect on irreversible morbidity/mortality or severe symptoms
- 2. Effect on surrogate/intermediate endpoint likely to predict clinical benefit

Benefits


- 1. Efficient clinical development (all fast track benefits)
- 2. Intensive guidance as early as Phase I
- 3. Organization commitment involving senior managers

Look #1: 8 of 9 patients treated ≥ 12 months

Treatment: 0%	NH: 50%	P < 0.01
---------------	---------	----------

Month	2-point ML Response		
6	0/9	(0%)	
9	1/9	(11%)	
12	0/8	(0%)	

Look #1: Trial subject A

Advice	Action	
N and follow-up low	Update to Look #2: (N = 8 \rightarrow 11)	
NH includes retrospective data	Compare retrospective vs prospective	
NH schedule less frequent than RX trial	Explore NH data (MMRM slope est.)LOCF, baseline at diagnosis age	
ML scale adapted from NHCommensurate, PRO/DDT validation?	Plan for NH rater to assess videos of RX-ML assessments using NH criteria	
Obtain additional NH databases	One smaller NH database contracted	

Granted BTD

Denied interim data filing \rightarrow complete the 48 week study

BTD Process Operational Challenges

High statistical & programming workload [Double Load]

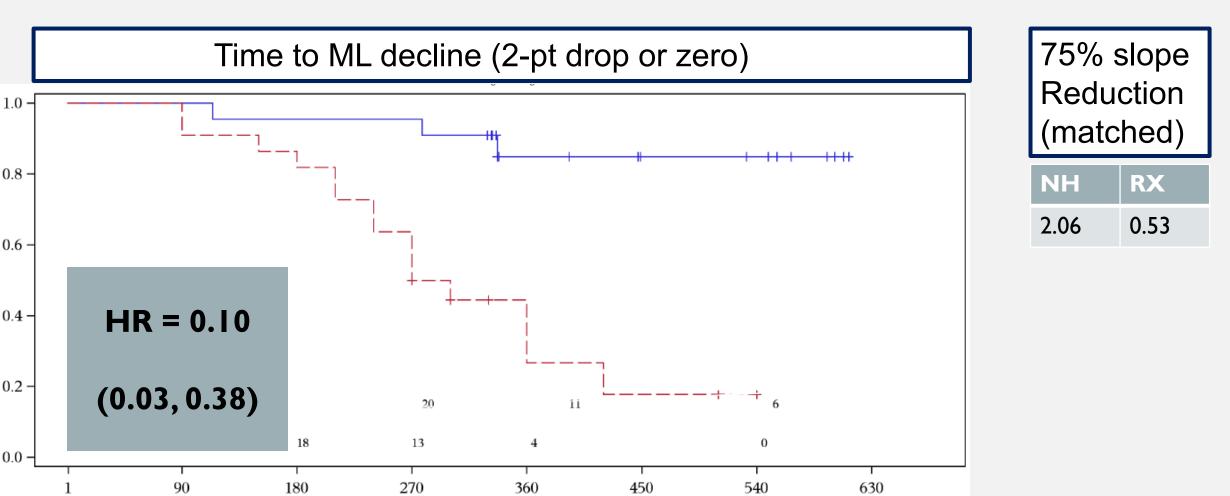
- Information requests concurrent with BLA preparation [interim data]
- Requests included SAS datasets & exploratory data analyses

BTD decision needed to be finalized before SAP/CDP discussions

SAP comments received near BLA filing date – many changes

BLA SUBMISSION & DISCUSSIONS CONCERNING RETROSPECTIVE NATURAL HISTORY DATA

BLA OVERVIEW / TIMELINE

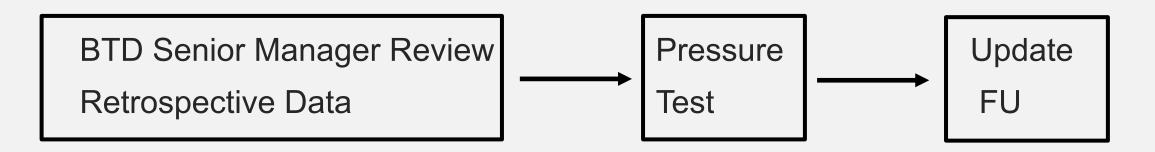

- ~ 5 years from first scientific meetings to approval
- ~ 3.5 years from FPI to approval
- ~ 2.25 years Clinical trial

CDP design	Accrual	LPO	DBL to BLA approval
65 Weeks	69 Weeks	48 Weeks	73 Weeks

BLA DISCUSSIONS

Advice/changes generally accepted

• High efficacy seen at time of BLA filing & expedience



BLA DISCUSSIONS

Change	SAP	Pre-BLA changes	Post-BLA changes	
N (24 treated)	N=21: I ET X 2 asym X	N=23: I ET \times 2 asym $$	N=22: I ET $\sqrt{2}$ asym X	Impute failure
primary endpoint	Primary ML slopeResponder supportive	Responder ML 2pt drop or 0 	Responder M 2pt drop or 0 	Inter-rater (video) questioned L
population / matching	Full populationno matchingN=(42, 24)	Match I – I • ML, age ≤12 • N=(21, 21)	Match I – I • ML, age ≤3, gene • N=(17, 17)	Reduced N & power
Analysis method for responder	Fisher Exact		McNemar	R ~ 0
Assessment Schedule		Supportive slopes analysis with LOCF	<u>All analyses</u> use LOCF to RX grid	Imputes flatness NH
Generalizability			Cox Models on Full population	
		Consider M.I.		We should have !!

BLA DISCUSSIONS

Many changes!

Updates considered substantial amendment: PDUFA date pushed 3 months

LOCF conservative analyses could only be overcome with updated data

I – I MATCHING

Matching can reduce bias and heterogeneity

- Choose variables predicting ML slope / propensity score matching
- Want high match percentage (age ≤ 12 months apart, equal ML)
- Specify in SAP before first treated follow-up visit

	Mean		
Population	NH	Treated	Correlation
Full N = (42, 23)	2.12	0.20	
Matched N = (21, 21)	2.05	0.24	-0.025

We had not planned to match due to no known covariates predictive of disease

LOOKING BACK

Protracted discussion period \rightarrow Eroded Power

- Simple responder analysis
- Matching (reduced N)
- LOCF

More careful decisions on SAP (ex. Missing data)

- Earlier SAP discussion
- Understand the Regulatory Authority (ex. "why do you ask for MMRM with LOCF?")
- Drop early BLA file plan / interim data will not show well with LOCF

LOOKING BACK

Other Lessons

- Use many NH data sources and justify selection
- Own / audit NH data
- Every data point matters when N is small / 100% audit & clean key data
- PRO instruments require validation (or concurrent pilot study).
- Video of assessments is good back-up plan (inter-rater reliability)
- Keep trial endpoints as similar to retrospective NH data as possible (resist improvements)

POWER REVISED ENDPOINTS – PROTOCOL / ISE

		If efficacy result not available ?			
		ol Assumptions	48 Week Failure Rat	e	
	-	e Reduction oss per 48 Weeks	NH 50% RX 20%		
METHOD	Not Matched (Full Sample)	I-I Match BL, age≤I2	I-I Match BL, age≤3, gene	Impute W.C. For Early Term	
Fisher	N=(42,23)	N=(21,21)	N=(17,17)	N=(18,18)	
Exact	62%	41%	32%	24%	
METHOD			I-I Match	Impute W.C.	

McNemer Exact Assumes pairs not correlated Power loss ~ delete one pair I-I Match BL, age≤3, gene N=(17,17) Impute W.C. For Early Term N=(18,18)

20%

POWER FOR REVISED ENDPOINTS: ACTUAL

48 Week (protocol)	48 Week (actual)
NH 50%	NH 51%
RX 20%	RX 9%

METHOD Fisher	Not Matched (Full Sample) N=(42,23)	I-I Match BL, age≤I2 N=(21,21)	I-I Match BL, age≤3, gene N=(17,17)	Impute W.C. For Early Term N=(18,18)
Exact	62% → 94%	41% → 79%	32% → 66%	24% → 52%
METHOD	LOCF-W48 ↓ po	ower to near 0	I-I Match	Impute W.C.
McNemer Exact	Complete FU th to overcome LC	rough Week 96	BL, age≤3, gene N=(17,17) 29% → 61%	For Early Term N=(18,18) 20% → 47%

SUMMARY AND CONCLUSIONS

SUMMARY

BLA approved with substantial amendment – extra 3 months

• NH data (exists) & BTD approval likely facilitated (early) BLA approval

Power of original design lost due to concerns non-randomized, non-prospective NH

- Matching reduced N failed to reduce heterogeneity
- Different schedules (LOCF to W48)

CONCEPTUAL

Randomized 16 x 2 trial has equal power. +10 wks (+23 accrual -13 substantial amd)

- Must assume high efficacy (risk)
- Need NH for assessing longer term efficacy (Control \rightarrow RX @ W48)
- Treated experience \downarrow @ BTD discussions. BTD successful? Necessary?
- Clean and fewer analyses

CONCLUSIONS

Randomized is best, and might not be slower (if high efficacy assumed). Risk?

Prospective >> Retrospective (challenging).

- Link early with Sci. Comm. / academic groups
- Design prospective NH studies / validate endpoints (or semi-validate)

Encourage Sci. Comm. to proceed as if an industry partner is available

Validate endpoints for regulatory use

Expect high hurdles retrospective NH

- Matching (↓ power)
- Conservative LOCF (↓ power)
- Longer FU [file BLA interim data]

Careful Pace (planning):

- Early FDA & <u>real</u> discussions
- better endpoints TTE, recurrent
- Improved imputation from LOCF

THANK YOU !