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Timeline of regulatory developments
for Al/ML-based medical devices

1+ 2019: Proposed Regulatory Framework for
Modifications to Artificial Intelligence/
Machine Learning (Al/ML)-Based Software as
a Medical Device (SaMD): Discussion Paper
and Request for Feedback

1+ 2021: Artificial Intelligence/Machine Learning How can we ver/fy

(Al/ML)-Based Software as a Medical Device that an ML-based
(5aMD): Action Plan medical device is
+ 2021: Good Machine Learning Practice for consistent/y safe
Medical Device Development: Guiding .
Principles and effective?

1 2023: Marketing Submission
Recommendations for a Predetermined
Change Control Plan for Artificial Intelligence/
Machine Learning (Al/ML)-Enabled Device
Software Functions: Draft Guidance
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) Performance across subgroups

FAIRVIS: Visual Analytics for
Discovering Intersectional Bias in Machine Learning
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Performance over time
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The role of model audits

Model audits are the first step to ensuring the safety and
effectiveness of ML-based medical devices.
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The role of model audits

Model audits are the first step to ensuring the safety and
effectiveness of ML-based medical devices.

Model training/
tuning

Model
development
audit
1
Model Model validation/
Model deployment —} audit
deployment (over time)
Performance across subgroups Performance over time

(Algorithm Bias & Robustness) (Real-World performance monitoring)



Outline

Auditing performance of ML algorithms

across subgroups, when the subgroups

are unknown Changepoint
detection

problems

Auditing performance of ML algorithms
over time, in the presence of
performativity
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Outline

Auditing performance of ML algorithms
across subgroups, when the subgroups
are unknown

Auditing performance of ML algorithms
over time, in the presence of
performativity
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Model calibration

When a risk prediction model p is used to inform medical decision
making, a fundamental requirement is that the model is “reliable,” in that

It Is well-calibrated:
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The calibration hierarchy

However, model calibration can vary across different subgroups.
A model p that is well-calibrated across all subgroups is “strongly

calibrated.”
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The calibration hierarchy

However, model calibration can vary across different subgroups.
A model p that is well-calibrated across all subgroups is “strongly

calibrated.”
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Testing for strong calibration

e Goal: Construct an omnibus test that answers the question
“Does a poorly-calibrated subgroup exist?”

Hy:Pr(X € A;) <y where A= {X: | poX) = pO0)| >5}

H, :Pr (X e A5) > ¥ ‘ Poorly calibrated subgroup

o Statistical challenges: Power for identifying poorly-calibrated
subgroups is often low because

e Correction for multiple testing after searching over a large
number of potential subgroups

e Little remaining signal if a highly flexible model was fit (e.qg.
via machine learning)
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Testing for strong calibration:
Existing approach

e Suppose we trained a model ¢ to predict the residual

e =Y — p(X) at each X.

* Bin test observations by their predicted residuals and conduct a
Chi-squared test (Goodness-of-fit Test)

Observed

residual
e =Y - pX)

Check if observed event

/' rates matches expected
event rates for each bin

>
Predicted residual €

Zhang et. al. 2021
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Testing for strong calibration
= [esting for changepoints

e Suppose we train

ed a

model g to predict the
expected residual at

each X.

e |f we order test
observations by t
predicted residua
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+ Avoids specifying subgroup size.

+ Detecting small subgroups <
Detecting early changepoints

+ Respects structure learned by the
residual model



Testing for strong calibration
= [esting for changepoints

e Suppose we train

ed a

model g to predict the
expected residual at

each X.

e |f we order test
observations by t
predicted residua
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A

Quantile

Cumulative score

Test statistic: Score-based CUSUM

| R . R
max sup— 2 (Y; = ps(Y;1 X)) 8:(X) 1{g(X) > )
k=LK 50 12
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Testing for strong calibration
= [esting for changepoints

Random Forest: g,

A

Quantile

e Suppose we trained an
ensemble of machine

learning models {g,} to
predict the expected
residual at each X.

Cumulative score

e |f we order test
observations by their
predicted residuals, we
expect a drop in the
association between
the observed and
predicted residuals...

Kernel Logistic Regression: g ;)

Cumulative score

Quantile
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Auditing a readmission model

e Trained a Random Forest (RF) that predicts risk of 30-day unplanned readmission using
Electronic Health Records (EHR) from the Zuckerberg San Francisco General Hospital

e Residual models: Random Forests and Kernel Logistic Regression

e Audit the model for strong calibration with respect to the demographic variables (6 = 0.05)

Cumulative score

Alternative: over-estimates

i Alternative: under-estimates

1.0 -
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0.0 L ’ ’ 1
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' Kernel Logistic Marital status: Divorced -
1.5 - Race: White 1
Race: Black or African American -
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Quantile Importance
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Outline

Auditing performance of ML algorithms
across subgroups, when the subgroups
are unknown
= Ve can reformulate this as a
changepoint detection problem.

Auditing performance of ML algorithms
over time, in the presence of
performativity
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The problem of performativity

Suppose we have a model for
predicting Post-operative Nausea and
Vomiting (PONV)...

Variables Qutcome

X, - Y,

\ /
pot)—

Prediction Treatment

Notation
p,: X, — [0,1]

ML-based risk
prediction algorithm

{0 Standard-of-care (SOC)
1 Additional treatment

5

_ J0 NoPONV
"~ 11 PONV

21

1. Alert! Patient is at high risk of PONV
2. Administer prophylactic treatment

3. Patient doesn’t develop PONV



The problem of performativity
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Only monitor the data from patients receiving SOC?

Yy,

A 7

Pz

Conditional performance

Y(0) | p(X) Mo oo

® Conditions away components
that are prone to distribution
shifts
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From monitoring in the “standard” setting
to the performative setting

K Hypothesis Test in the standard setting:

H, : There is no change in the conditional distribution, i.e.

Pr (Yt =1|Z = z) = 2(z; 6) VzeER,t=1,2,--

¥

Hypothesis Test in the performative setting:

\_

H, : There is no change in the conditional performance, i.e.

Pr (le-(o) — 1|]3ri(Xri) — Q) — g(q; (90) Vq & R,i — 1,2’,”
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lgnoring performativity is valid if...

Conditional exchangeability:

A clinician’s propensity to treat patient X, only depends on the predicted risk
and the clinician’s past experiences interacting with the ML algorithm.

Y(0) L A, | p(X,), F,

Xt— |

(We can extend this condition if treatment propensities depend on other variables as well.)
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Monitoring solutions in the presence of performativity

Frequentist

A score-based CUSUM procedure Full Bayesian inference

Chart statistic at index i: Chart statistic at index i

t
C(i) = max Z Vslogp <Y1j | ﬁTj(XTj);éj_l,5>

s=1,--,i

C(i) = Pr ( Ak < T3P, (X, ), Yy pr(X), Y)

j:S 520
. . Posterior probability of there having
Cumulative score from candidate been a changepoint
changepoint 7,
Control limit at index i: Dynamically Control limit at index i: Fixed at 1 —

calculated for a pre-specified alpha-spending
function using a parametric Bootstrap.

1 1
/
0.75 yA 0.75
0.5 0.5 /
0.25 0.25 /\ /
0 0 L
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Control limit — Chart statistic Control limit — Chart statistic

20



Simulation: What is the impact of clinician trust?

Score-based CUSUM Bayesian
1.0 1.07 .
o8 Y I fﬁ Calibration decay
calibrated
ool € el — over concentrated among
g N atients unlikely to
§0'4— Trust §0'4— p . y
02 — none Ll receive SOC
: calibrated 4] :
g _I_r'_ —— over E
093 100 200 300 400 003 100 200 300 400
Alert time Alert time

= |/Vhen designing a ML monitoring system, determine if clinician trust is likely to
interfere with our ability to detect performance decay. If so, consider designing a
system that pulls in additional sources of data or actively increases the amount of
information in the monitoring data.

27



Case study: Post-operative Nausea and Vomiting (PONV)

® Data: UCSF Multicenter Perioperative Outcomes Group (MPOG)

® ML algorithm: A locked Random Forest using sex, smoking status,
American Society of Anesthesiologists (ASA) classification, ...

Score-based CUSUM

—— Chart statistic
——— Control limit

20 1

10 A

28

Bayesian monitoring

0.8 A

0.6 -

—— Chart statistic
——— Control limit

0.4




Case study: Post-operative Nausea and Vomiting (PONV)

® Data: UCSF Multicenter Perioperative Outcomes Group (MPOG)

® ML algorithm: A continually retrained Random Forest
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Outline

Auditing performance of ML algorithms across subgroups,
when the subgroups are unknown
= Ve can reformulate this as a changepoint detection
problem.
= http://arxiv.org/abs/2307.15247

Auditing performance of ML algorithms over time, in the
presence of performativity
= By casting the online changepoint detection problem
In the causal framework, we derive ignorability
conditions and monitoring procedures.
= htip://arxiv.org/abs/2211.09781
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Thank you!

Support from the UCSF-Stanford CERSI program

(Disclaimer: The contents are those of the author(s) and do not necessatrily represent the
official views of, nor an endorsement, by FDA/HHS, or the U.S. Government.)
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